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Short recap and learning targets

« Ultimate goal: derivation of the cross section for ete™ —» u*tu~ annihilation as an example of calculation
8 p

in QED

Learning targets

* basic ingredients of a QED calculation

* electron probability current

* muon probability current

« matrix element calculation using Feynman rules

« compute the cross section for e¥e™ — u*u~ annihilation process taking into account the helicity of the

electrons and muons



QED calculations

How to calculate a cross section using QED (e.g. ete”™ —» utu™):

1. Draw all possible Feynman diagrams

 forete™ — utu~ there is only one lowest order diagram: M « e* < @y,
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e plus many second order diagrams: M « e?* < a2
em
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2. For each diagram, calculate the matrix element using Feynman rules



QED calculations

How to calculate a cross section using QED (e.g. ete”™ —» utu™):

3. Sum the individual matrix elements (i.e. sum the amplitudes)
i Mfl :M1+M2 +M3 + .-
* note: summing amplitudes = different diagrams can interfere either positively or negatively!
. 2 * * *
4. Square the matrix element |Mfl-| =(M;{+M;,+M3+ )My + My + M3+ )
* this gives the full perturbative expansion in agp,

Question: By which factor are higher-order corrections suppressed?



QED calculations

How to calculate a cross section using QED (e.g. ete™ - u*u~):

3. Sum the individual matrix elements (i.e. sum the amplitudes)
i Mfl :M1+M2 +M3 + .-

* note: summing amplitudes = different diagrams can interfere either positively or negatively!

2
4. Square the matrix element |Mfl-| =(M;{+M;,+M35+ )My + My + M3+ )
» this gives the full perturbative expansion in g,

* for QED: agy, ~ 1/137 and the lowest order diagram dominates and for most purposes it is sufficient to neglect
higher order diagrams
e v b et Y p
2 2 2 4
M~ < o, M* =< o,
e B e B

* interference term suppressed by a.,, = leading—order QED calculations correct to = 1% >




QED calculations

How to calculate a cross section using QED (e.g. ete™ - u*u~):

5. Calculate the decay rate/cross section using the previous formulae

* for a decay with center-of-mass frame momentum p* of the final-state particles:

U M| do
32m2m? )
* for scattering in the center-of-mass frame:
do 1 |ﬁf* 2
= | My

dQ*  64m?s |p;”

* for scattering in the lab. frame (neglecting the mass of the scattered particle):

do 1 [ E;\* 2
== (3= Mgl
dQ 64n2\ME,



Electron-positron annihilation

Consider the process: efe” » u*u~

« We will work in CoM frame (appropriate for most e e~ colliders)

+ p1 = (E,0,0,p),p, = (,0,0,~p), ps = (E, Bf), pa = (E,~ ) / P2
 only consider the lowest order Feynman diagram l"’+ P4

et P2

—iM = [5(p,)iey u(py)] _‘q“‘]z“" [G(ps)iey”v(py)]

* incoming anti-particle v(p,)
* incoming particle u(p,)

* adjoint spinor written first

Mpnemonic rule: the spinor representing the particle gong
“away” from the vertex appears as the adjoint spinor



Electron-positron annihilation

* In the CoM frame:

do 1 |
dQ*  64m2s |p;”

| with s = (pl +p2)2 = (E +E)2 = 4E2

* Here ¢® = (py +p2)* =

—iM = [5(py)iey u(p,)] qg [G(ps)iey v(p,)]

Y

M = —— g [Py ulp)] 2 (Ps)y v (p,)]



Electron and muon currents

* Previously we introduced the four-vector current:
j H — ‘TJ'}/MLIJ
j# has the same form as the two terms in the brackets of the matrix element

* The matrix element can be written in terms of the e and u currents:

Jtey = P2y u(py) and ji,y = @(p3)y¥v(ps)

L

e? e’

. .l_,l, . . . .
M= ——Gwiew =~ Je© Jw

* The matrix element is a scalar product of four-vectors = Lorentz-invariant quantity



Spin in eTe™ annihilation

* In general, the electron and positron are not polarized = equal numbers of positive and negative

helicity states

 Four possible combinations of spins in the initial state

e—"’u"e* e—"u"e* e—"n"e* e—"n"e“
RL RR LL LR

 Similarly, there are four possible helicity combinations in the final state
* In total we get 16 orthogonal helicity combinations: RL - RR,RL — RL, ...

 Each helicity combination corresponds to a separate physical process

10



Spin in eTe™ annihilation

* To account for these states, we must:
 sum over all 16 possible helicity combinations

* average over the number of initial helicity states

1 1
(IM]%) = 2 z |M;|* = Z(|MLL—>LL|2 + My oprl + )

spins

2
* We need to evaluate M = — % Jee) * Jqu for all 16 helicity combinations

* Fortunately, in the limit E >> m, only 4 helicity combinations give non-zero matrix elements

 important feature of QED/QCD



Spin in eTe™ annihilation

e In the CoM frame in the limit E > m
° pl = (E, 0, O,E)

* P2 = (E, 01 Or _E) e—

 p; = (E, Esin®, 0, Ecosf)

+
* p, = (E,—Esing, 0, —Ecos0) L

* Left- and right-handed helicity spinors for particles and antiparticles:

c -5 S

uy = VE [ sei¢ |, u, =VE|[ cel® |, v; = VE [ —cei®
c S —s

seld —cet?d celd

Using the shorthand notation s = sin6/2,c = cos8/2 and N = VE + m =~ VE



Spin in eTe™ annihilation

* The initial-state e~ can either be in a left- or right-handed helicity state

1 0
ur(pr) = VE( O ) uy(p1) = VE[ 1
1 0
0 —1

* The initial state positron (6 = ) can have

1 0
1 (p2) = VE 01 , v (p2) = VE é

0 1



Spin in eTe™ annihilation

 Similarly for the final state u~ with a polar angle 8 and choosing ¢ = 0

C —S
ur(ps) = VE[S ) u,(ps3) = VE[ ¢
C S
S

—C
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Spin in eTe™ annihilation

* And for the final-state u™ replacing 8 - w — 6, ¢ — 1 obtain:

C

v1(Pg) = VE[ S

—C
—S

)

v (Ps) = VE

« Using sin (ET_B) = cos 8/2 and cos (RT_H) =sinf/2,e " = -1

2
 We want to calculate the matrix element M = — e? Je) " Jw

* First consider the muon current j,,) for 4 possible helicity combination:

RR

RL

LR

S
—C

S
—C
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The muon current

« We want to evaluate jg’ﬂ) = u(p3)y v(p,4) for all helicity combinations

» For arbitrary spinors i and ¢, it is straightforward to show that the components of Yy ¢ are:

Yy°d = TyOr°¢ = Yigs + Y3, + Yids +Pid,
Yy'e = pyoyie = Yids + Yids +Pid, + Yids
Yy?e = YPTyy?¢ = —i(igs — P33 + Yid, — Pig)
Yyie = 9TyOr3¢ = Yigs — Yids + Yidy — Yid2



The muon current

* Let’s consider pgu; combination using ¥ = uy, ¢ = v, with

C

wu, =vVE([S), vp)=VE[C
C
S

ur(p3)y°vi(py) = E(cs —sc+cs—sc) =0
ur(p3)ytvi(py) = E(—c? + s% — c? + s%) = 2E(s? — ¢?) = —2Ecos#
U1 (p3)y?vy(py) = —IE(—c* — 5% — ¢* — 5%) = 2iE

1 (p3)y3v (py) = E(cs + sc + ¢s + sc) = 4Esc = 2Esin6



The muon current

* Giving for the four-vector muon current for the RL combination:

ur(p3)yYv (ps) = 2E(0, —cos0, i, sinh)

 The result for the four helicity combinations are:

u+*/ ,,,e"""‘l'_ Uy (p3)yYvi(ps) = 2E(0, —cosb, i, sinf)
= B Gy vi(ps) = (0000)
o =B amrues) = (00,00

+ = __f/#“' U, (p3)yYvi(ps) = 2E(0, —cosB, —i, sinf)

18



The muon current

In the limit E > m only two helicity combinations are non-zero!

Important feature of QED (applies also to QCD)

In the weak interaction only one helicity combination contributes

The origin of this effect will be discussed in the last part of this lecture

* As a consequence, of the 16 possible helicity combination, only four give non-zero matrix elements



The muon current

« Fore*e™ - u"u™ now we only have to consider four matrix elements:

e;en = Upli U
&
Mu] o =

e+

ege; — U Ur /’p”ll
i =

e > ¢ e+ MRL
/
T
er en = Ui Uh H
< M
o = L em LL

20



The muon current

* We derived the muon currents for the allowed helicity combinations

R = U upur Uy (p3)yYvi(ps) = 2E(0, —cosb, i, sinf)
l.l+‘-/
u-i-*':/—

&y T g (ps)y Y vi(ps) = 2E(0, —cosf, —i, sind)

* And we now need to focus on the electron current

21



The electron current

* The incoming electron and positron spinors (L and R helicities) are:

1 0 1 0
ur(p1) = VE([ O ) u, = VE[ 1 ) vr(p2) = VE[ O ) vi(p2) = VE|[1
1 0 —1 0
0 —1 0 1

* The electron current can be obtained directly from the expressions for the muon current

]'(Me) = v(p)v*u(p,) andj,, = u(p3)y " v(ps)

 Taking the Hermitian conjugate of the muon current gives:

B + Here we used:
[@(p3)y v(pa)]T = [u(ps) Ty v(ps)]
(AB)T = BTAT
= v(p )Ty Tu(ps) YOt = 40
0 —_.,,0
= v(p) Yy ulp;) yViy® =y

= U(p4) ¥ u(ps)



The electron current

 Taking the complex conjugate of the muon currents for the two non-zero helicity configuration we get:

U1 ()Y ur(p3) = [tr(p3)yYvi(pe)]* = 2E(0, —cosO, —i, sinh)
U1 (pa)yVui(p3) = luy(p3)y ' vi(pa)]* = 2E(0, —cos8, i, sinf)

* To obtain the electron currents we simply need to set 8 = 0

e — > < — e+ eEle: v (p2)vH*ur(py) = 2E(0,—1,—1,0)

e ——) ——— €7 efep:vr(p)y*u(ps) = 2E(0,—1,i,0)

23



Matrix element calculation

2
* We can now calculate M = — e? J(e) * Jqu) for the four possible helicity combinations

* e.g. we will do it for ege;” — pugzuf which we will call Mgp (first subscript refers to the e~ helicity and the

second to the ™ helicity and we don't need to specify other helicities due to “helicity conservation”)

H _ . _ .
% erertjtey = 01y ur(py) = 2E(0,—1,—i,0)
_  EmEm S _ , _ ..
e & urufiily = 51 ()Y us(ps) = 2E(0, —cosh i, sind)
Zz
+

)

2
e
= Mpp = Y [2E(0,—1,—i,0)] - [2E(0, —cos0, i,sin8)] = —e?(1 + cosf) = —4ma (1 + cosH)

e 1
Here we used: a = ™ T3y

137 24



Matrix element calculation
|Mgr|? = |My.|* = (4a)?(1 + cosh)?
|MRL|2 = |MLR|2 = (47Ta)2(1 — C059)2

Z\’IRI.

IVILI(

-1 cos0 +1

e’(1+cosB)? | e*(1—cosB)? | e*(1—cosh)?

« Assuming that the incoming electrons and positrons are unpolarized, all 4 possible initial helicity states

are equally likely (and in particular the 2 that contribute) 25



Differential cross section

» Cross section: obtained by averaging over the initial spin states and summing over the final spin states

do _1
dQ 47 64m2s

(IMggr|* + [Mg|% + [Mgp]? + |My.]%)

\Mge|? + |Mig|>  |Mgr|* + |MpL|?
: A

Note: no interference between amplitudes with
different helicity configurations

d 4rar)?

d—g = ;576:625 (2(1 + cosB)?* + 2(1 — cosh)?) :
do a’ ) 20
0= 1 — (1 + cos*0) — —




Differential cross section: measurement

« Example: ete™ - uTu~ at+/s = 29 GeV

* Mark II experiment at the SLAC linear collider

6 O ' T 1 T ]

M.E.Levi et al.
Phys. Rev. Lett 51 (1983) 1941 /

- - - - pure QED, C’)(ozg)
—— QED + Z contribution

40 =]
S ¢ ¢
n 30 |- ¢ -
-g 8 A (a) 4 Angular distribution becomes slightly asymmetric in
oo T . g | i . T higher order QED or when Z distribution is included
w  SOLED O G5

27



Total cross section: measurement

 The total cross section is obtained by integrating over 6, ¢ using

do a* , , 1 , 167
— (1 4+ cos“f) and | (1 + cos“0)dQ = 2n (1 + cos“B)d(cosh) = —
dQ  4s _1 3
« We get the total QED cross section for the processete™ - u*u~
10 ;_.T.—T‘—"T 1] I DR ) I | [ LI TR | [ E I E 4”“ 2
:_-_ eve” >puuT E 0o =
v Jade
- 0 Mark J . 3 S
1 ::‘”” - * Lowest order cross section calculation provides a good
—D E asso ; . .
= i description of the data
b i Oaep = il
01 |- - * This is an impressive result: from first principles we have
& 5
i : arrived at an expression for the electron-positron annihilation
S S P TR | cross section accurate to about 1% precision!

(=]
s
o
N
o
W
o
S
o

s(GeV) *



Spin considerations (E > m)

* The angular dependence of the QED electron-positron matrix elements can be understood in terms of angular

momentum
» Because of the allowed helicity states, the electron and positron interact in a spin state with S, = 1

* They are in a total spin—1 state, consistent with the exchange of a spin—1 particle, the photon, which is aligned

along the z axis: |1, +1) or |1, —1)

 Similarly, the muon and anti-muon are produced in a total spin—1 state aligned along an axis with polar angle 8

[V ‘1:1>9

Mgrr H/-"+ .
s °

= Mgzg < (Y|1,1), where ) is the spin state, |1, —1)4 of the u*u™ pair

1,1)

29



Spin considerations (E > m)

* To evaluate this we need to express |1, +1)g in terms of the eigenstates of S,

 We can show that:

|1, +1)g =—(1 —cosf) |1,—-1) +—= 51n9|1 0)+-= (1 + cosf)|1,+1)



Spin considerations (E > m)

» Using the wavefunction for spin—1 state along an axis at an angle 6 we can understand the angular

dependence

MRR

|
p -1 cosO +1

IMir|? o< [(y]1,—1)|* = 7(1 —cos 0)?

31



Lorentz-invariant form of the Matrix Element

Note that the derived spin-averaged ME is written in terms of the muon angle in the CoM frame

1 p3 Q-
<|Mfi|2> - ZX(|MRR|2 + |Mgl? + Mg, |? + My |*) = P1 Q/W'

e
=2 e*(2(1 + cosB)? + 2(1 — cosB)?) = e*(1 + cos26) / P2
! l"’+ P4

The matrix element is Lorentz-invariant (scalar product of 4-vector currents) and it is desirable to write

it in a frame-independent form (express in terms of 4-vector scalar products)
In the CoM: p; = (E,0,0,E),p, = (E,0,0,—E),p3; = (E,Esind, 0, Ecosf), p, = (E, —Esin6, 0, —Ecosf)
From which we get: p; - p, = 2E#, p; - p3 = E*(1 — cosf), and p; - p, = E*(1 + cosf) =

. (01 p3)° + (p1 - Pa)? _ 9k t? 4+ u’
(p1 - p2)? s2

(17 %) = 26

32
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Chirality

 The helicity eigenstates for a particle/antiparticle for E > m are:

c -5 S c

uy = VE [ sei¢ |, u, =VE|[ cel® |, vy =VE [ —cei® |, v, = VE [ sei¢
c S —s c

setd —cel® cetd setd

Using s =sinf/2,c = cos8/2 and N =VE +m ~E

e We can define the matrix: y> swaps components 1-3 and 2-4 of
0 0 1 O
0 0 0 1 0 I
0,1,2,,3 —
=y =11 5 o o0 ]=( o)
0 1 0 O

* In the limit E » m (only in this limit) the helicity eigenstates are also eigenstates of y°

5.  _ 5.
Y ur = +uy, Y uy, = —uy; yUvr = —y, Y v, = +v,



Chirality

« In general, we can define the eigenstates of y° as left- and right-handed chiral states: ug, u;, vg, vy,
50 = + 5. — —qy.c Y5y, — — 5, — +
Y Ugp = TUp, YU, = —uUy, Y Vr = —Vp Yy UL = TV

* In the limit £ > m (and only in this limit)

uR — uT, ’LLL = ul, UR — UT, UL = vl

* Important point: in the general case, the helicity and chiral eigenstates are NOT the same!
* Only in the ultra-relativistic limit that the chiral eigenstates correspond to the helicity eigenstates

* Chirality is an important concept in the structure of QED and any interaction of the form uy"u

34



Chirality

 In general, the eigenstates of the chirality operator are:
5 — 5 _ g 5 — 5 —
Y ugp = +uRJ Yy U, = —UuUp, Y Vr = —Up, Y VL = +vL

* Define the projection operators:

1 5 1 5
Pr=50+y), P=50-v)

2 2

 The projection operators project out the chiral eigenstates

PRuR=uR, PRUL=O: PLuR=0, PLuL=uL
PRUR=O; PRUL=VL; PLszvR, PLUL=O

* Note: P projects out right-handed particle states and left-handed antiparticle states

* We can then write any spinor in terms of its left and right-handed chiral components:

1 1
Y =yYr+y, =§(1+75)¢+E(1—75)¢



Chirality in QED
* In QED the basic interaction between a fermion and a photon is given by
iepy"
* We can decompose the spinors in terms of their Left- and Right-handed chiral components
iepyte = ie(Py + Pr)y* (P, + dr) =
= ie(Yry g + YLy dr + VrYF L + PrvFédL)

» Using the properties of y>:

we can directly get

YLyFor = YryHe, = 0 = iepy# ¢ = ie(Yry g + YLy L)

* Only certain combinations of chiral eigenstates contribute to the interaction (always a true statement)
36



Chirality in QED

* For E > m the chiral and helicity eigenstates are equivalent
« = for E > m only certain helicity combinations contribute to the QED vertex

 This is why we previously found that for two of the four helicity combinations for the muons, the

current were zero



Allowed QED helicity combinations

* In the ultra-relativistic limit, the helicity eigenstate = chiral eigenstate

* In this limit, the only non-zero helicity combinations in QED are:

Scattering: “Helicity conservation”
N N - N -
R R

Annihilation:

L
N N N
' /7 Vg
R

&




Summary

In the center-of-mass frame the e*e™ - u*u~ differential cross section is

do «a?

1
) 4S( + cos?9)

* Note: masses of the muons neglected (E > m,,)

In QED only certain combinations of left- and right-handed chiral states have a non-zero matrix element

Chiral states are defined by the chiral projection operators

1 1
PR=§(1+V5), PL=E(1_]/5)



Summary of Lecture 8

Main learning outcomes

* basic ingredients of a QED calculations

« derivation of the cross section for eTe™ — u*u~ annihilation as an example of calculation in QED taking

into account the helicity of the electrons and muons

 correspondence between helicity and chirality



