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Short recap and learning targets
• Ultimate goal: derivation of the cross section for 𝑒!𝑒" → 𝜇!𝜇" annihilation as an example of calculation 

in QED  

Learning targets

• basic ingredients of a QED calculation

• electron probability current

• muon probability current

• matrix element calculation using Feynman rules

• compute the cross section for 𝑒!𝑒" → 𝜇!𝜇" annihilation process taking into account the helicity of the 

electrons and muons
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QED calculations
How to calculate a cross section using QED (e.g. 𝑒!𝑒" → 𝜇!𝜇"):

1. Draw all possible Feynman diagrams

• for 𝑒!𝑒" → 𝜇!𝜇" there is only one lowest order diagram: 𝑀 ∝ 𝑒# ∝ 𝛼$%

• plus many second order diagrams: 𝑀 ∝ 𝑒& ∝ 𝛼$%#

2. For each diagram, calculate the matrix element using Feynman rules
3



QED calculations
How to calculate a cross section using QED (e.g. 𝑒!𝑒" → 𝜇!𝜇"):

3. Sum the individual matrix elements (i.e. sum the amplitudes)

• 𝑀'( = 𝑀) +𝑀# +𝑀* +⋯

• note: summing amplitudes ⟹ different diagrams can interfere either positively or negatively!

4. Square the matrix element 𝑀#$
% = 𝑀&∗ +𝑀%

∗ +𝑀(
∗ +⋯ 𝑀& +𝑀% +𝑀( +⋯

• this gives the full perturbative expansion in 𝛼$%

Question: By which factor are higher-order corrections suppressed?
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QED calculations
How to calculate a cross section using QED (e.g. 𝑒!𝑒" → 𝜇!𝜇"):

3. Sum the individual matrix elements (i.e. sum the amplitudes)

• 𝑀'( = 𝑀) +𝑀# +𝑀* +⋯

• note: summing amplitudes ⟹ different diagrams can interfere either positively or negatively!

4. Square the matrix element 𝑀#$
% = 𝑀&∗ +𝑀%

∗ +𝑀(
∗ +⋯ 𝑀& +𝑀% +𝑀( +⋯

• this gives the full perturbative expansion in 𝛼$%

• for QED: 𝛼$% ∼ 1/137 and the lowest order diagram dominates and for most purposes it is sufficient to neglect 

higher order diagrams

• interference term suppressed by 𝛼$% ⟹ leading–order QED calculations correct to ≈ 1% 5



QED calculations
How to calculate a cross section using QED (e.g. 𝑒!𝑒" → 𝜇!𝜇"):

5. Calculate the decay rate/cross section using the previous formulae

• for a decay with center-of-mass frame momentum 𝑝∗ of the final-state particles:

• for scattering in the center-of-mass frame:

• for scattering in the lab. frame (neglecting the mass of the scattered particle):
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Γ =
𝑝⃗∗

32𝜋4𝑚5
4) 𝑀65

4 𝑑Ω

𝑑𝜎
𝑑Ω∗

=
1

64𝜋4𝑠
𝑝⃗6

∗

𝑝⃗5
∗ 𝑀65

4

𝑑𝜎
𝑑Ω

=
1

64𝜋4
𝐸7
𝑀𝐸8

4
𝑀65
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Electron-positron annihilation

Consider the process: 𝑒!𝑒" → 𝜇!𝜇"

• We will work in CoM frame (appropriate for most 𝑒!𝑒" colliders)

• 𝑝) = 𝐸, 0, 0, 𝑝 , 𝑝# = 𝐸, 0, 0, −𝑝 , 𝑝* = (𝐸, 𝑝⃗'), 𝑝& = (𝐸,−𝑝⃗')

• only consider the lowest order Feynman diagram
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−𝑖𝑀 = 𝑣̅ 𝑝% 𝑖𝑒𝛾)𝑢 𝑝&
−𝑖𝑔)*
𝑞%

1𝑢 𝑝( 𝑖𝑒𝛾*𝑣 𝑝+

• incoming anti-particle 𝑣̅(𝑝#)

• incoming particle 𝑢(𝑝))

• adjoint spinor written first 

Mnemonic rule: the spinor representing the particle gong 
“away” from the vertex appears as the adjoint spinor



Electron-positron annihilation

• In the CoM frame:

• Here 𝑞% = 𝑝& + 𝑝% % = 𝑠
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−𝑖𝑀 = 𝑣̅ 𝑝! 𝑖𝑒𝛾"𝑢 𝑝#
−𝑖𝑔"$
𝑞!

-𝑢 𝑝% 𝑖𝑒𝛾$𝑣 𝑝&

𝑀 = −
𝑒!

𝑠 𝑔"$ 𝑣̅ 𝑝! 𝛾"𝑢 𝑝# -𝑢 𝑝% 𝛾$𝑣 𝑝&

𝑑𝜎
𝑑Ω∗

=
1

64𝜋4𝑠
𝑝⃗6

∗

𝑝⃗5
∗ 𝑀65

4
	with	𝑠 = 𝑝8 + 𝑝4 4 = 𝐸 + 𝐸 4 = 4𝐸4



Electron and muon currents

• Previously we introduced the four-vector current:

• The matrix element can be written in terms of the 𝑒 and 𝜇 currents:

• The matrix element is a scalar product of four-vectors ⟹ Lorentz-invariant quantity
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𝑀 = −
𝑒4

𝑠
𝑔CD𝑗 E

C 𝑗 C
D = −

𝑒4

𝑠
𝑗(E) ⋅ 𝑗(C)

𝑗C = >Ψ𝛾CΨ

𝑗, has the same form as the two terms in the brackets of the matrix element

𝑗(E)
C = 𝑣̅ 𝑝4 𝛾C𝑢 𝑝8 	 and	 𝑗(C)D = G𝑢 𝑝7 𝛾D𝑣 𝑝G



Spin in 𝒆!𝒆" annihilation

• In general, the electron and positron are not polarized ⟹ equal numbers of positive and negative 

helicity states

• Four possible combinations of spins in the initial state
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• Similarly, there are four possible helicity combinations in the final state

• In total we get 16 orthogonal helicity combinations: 𝐑𝐋 → 𝐑𝐑,𝐑𝐋 → 𝐑𝐋,…

• Each helicity combination corresponds to a separate physical process



Spin in 𝒆!𝒆" annihilation

• To account for these states, we must: 

• sum over all 16 possible helicity combinations

• average over the number of initial helicity states
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• We need to evaluate 𝑀 = − ,!

-
𝑗(,) ⋅ 𝑗()) for all 16 helicity combinations

• Fortunately, in the limit 𝐸 ≫ 𝑚) only 4 helicity combinations give non-zero matrix elements

• important feature of QED/QCD

𝑀 4 =
1
4
H
HIJKH

𝑀5
4 =

1
4

𝑀LL→LL
4 + 𝑀LL→LM

4 +⋯



Spin in 𝒆!𝒆" annihilation

• In the CoM frame in the limit 𝐸 ≫ 𝑚

• 𝑝) = 𝐸, 0, 0, 𝐸

• 𝑝# = 𝐸, 0, 0, −𝐸

• 𝑝* = 𝐸, 𝐸sin𝜃, 0, 𝐸cos𝜃

• 𝑝& = 𝐸,−𝐸sin𝜃, 0, −𝐸cos𝜃

• Left- and right-handed helicity spinors for particles and antiparticles:
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𝑢↑ = 𝐸
𝑐

𝑠𝑒()
𝑐

𝑠𝑒()

, 𝑢↓ = 𝐸
−𝑠
𝑐𝑒()
𝑠

−𝑐𝑒()

, 𝑣↑ = 𝐸
𝑠

−𝑐𝑒()
−𝑠
𝑐𝑒()

, 𝑣↓ = 𝐸
𝑐

𝑠𝑒()
𝑐

𝑠𝑒()

Using the shorthand notation 𝑠 = sin 𝜃/2 , 𝑐 = cos 𝜃/2 and 𝑁 = 𝐸 +𝑚 ≈ 𝐸 



Spin in 𝒆!𝒆" annihilation

• The initial-state 𝑒" can either be in a left- or right-handed helicity state

• The initial state positron 𝜃 = 𝜋  can have
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𝑣↑(𝑝") = 𝐸
1
0
−1
0

, 𝑣↓(𝑝") = 𝐸
0
1
0
1

𝑢↑(𝑝$) = 𝐸
1
0
1
0

, 𝑢↓(𝑝$) = 𝐸
0
1
0
−1



Spin in 𝒆!𝒆" annihilation

• Similarly for the final state 𝜇" with a polar angle 𝜃 and choosing 𝜙 = 0
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𝑢↑(𝑝%) = 𝐸
𝑐
𝑠
𝑐
𝑠

, 𝑢↓(𝑝%) = 𝐸
−𝑠
𝑐
𝑠
−𝑐



Spin in 𝒆!𝒆" annihilation
• And for the final-state 𝜇! replacing 𝜃 → 𝜋 − 𝜃, 𝜙 → 𝜋 obtain:

• Using sin 0"1
%

= cos 𝜃/2 and cos 0"1
%

= sin 𝜃/2, 𝑒"$0 = −1

• We want to calculate the matrix element 𝑀 = − ,!

-
𝑗 , ⋅ 𝑗())

• First consider the muon current 𝑗()) for 4 possible helicity combination:

15

𝑣↑(𝑝&) = 𝐸
𝑐
𝑠
−𝑐
−𝑠

, 𝑣↓(𝑝&) = 𝐸
𝑠
−𝑐
𝑠
−𝑐



The muon current

• We want to evaluate 𝑗 )
* = 1𝑢 𝑝( 𝛾*𝑣(𝑝+) for all helicity combinations

• For arbitrary spinors 𝜓 and 𝜙, it is straightforward to show that the components of 1𝜓𝛾*𝜙 are:
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G𝜓𝛾Y𝜙 = 𝜓Z𝛾Y𝛾Y𝜙 = 𝜓8∗𝜙8 + 𝜓4∗𝜙4 + 𝜓7∗𝜙7 + 𝜓G∗𝜙G

G𝜓𝛾8𝜙 = 𝜓Z𝛾Y𝛾8𝜙 = 𝜓8∗𝜙G + 𝜓4∗𝜙7 + 𝜓7∗𝜙4 + 𝜓G∗𝜙8

	 G𝜓𝛾4𝜙 = 𝜓Z𝛾Y𝛾4𝜙 = −𝑖 𝜓8∗𝜙G − 𝜓4∗𝜙7 + 𝜓7∗𝜙4 − 𝜓G∗𝜙8

G𝜓𝛾7𝜙 = 𝜓Z𝛾Y𝛾7𝜙 = 𝜓8∗𝜙7 − 𝜓4∗𝜙G + 𝜓7∗𝜙8 − 𝜓G∗𝜙4



The muon current
• Let’s consider 𝜇2"𝜇3! combination using 𝜓 = 𝑢↑, 𝜙 = 𝑣↓ with
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𝑢↑ = 𝐸
𝑐
𝑠
𝑐
𝑠

, 𝑣↓(𝑝&) = 𝐸
𝑠
−𝑐
𝑠
−𝑐

G𝑢↑ 𝑝7 𝛾Y𝑣↓ 𝑝G = 𝐸 𝑐𝑠 − 𝑠𝑐 + 𝑐𝑠 − 𝑠𝑐 = 0 

G𝑢↑ 𝑝7 𝛾8𝑣↓ 𝑝G = 𝐸 −𝑐4 + 𝑠4 − 𝑐4 + 𝑠4 = 2𝐸 𝑠4 − 𝑐4 = −2𝐸cos𝜃 

G𝑢↑ 𝑝7 𝛾4𝑣↓ 𝑝G = −𝑖𝐸 −𝑐4 − 𝑠4 − 𝑐4 − 𝑠4 = 2𝑖𝐸 

G𝑢↑ 𝑝7 𝛾7𝑣↓ 𝑝G = 𝐸 𝑐𝑠 + 𝑠𝑐 + 𝑐𝑠 + 𝑠𝑐 = 4𝐸𝑠𝑐 = 2𝐸sin𝜃 



The muon current
• Giving for the four-vector muon current for the RL combination:

• The result for the four helicity combinations are:
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G𝑢↑ 𝑝7 𝛾D𝑣↓ 𝑝G = 2𝐸 0,−cos𝜃, 𝑖, sin𝜃  

G𝑢↑ 𝑝7 𝛾D𝑣↑ 𝑝G = 0,0,0,0  

G𝑢↓ 𝑝7 𝛾D𝑣↓ 𝑝G = 0,0,0,0  

G𝑢↓ 𝑝7 𝛾D𝑣↑ 𝑝G = 2𝐸 0,−cos𝜃,−𝑖, sin𝜃  

1𝑢↑ 𝑝( 𝛾*𝑣↓ 𝑝+ = 2𝐸 0,−cos𝜃, 𝑖, sin𝜃



The muon current

• In the limit 𝑬 ≫ 𝒎 only two helicity combinations are non-zero!

• Important feature of QED (applies also to QCD)

• In the weak interaction only one helicity combination contributes

• The origin of this effect will be discussed in the last part of this lecture

• As a consequence, of the 16 possible helicity combination, only four give non-zero matrix elements
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The muon current

• For 𝑒!𝑒" → 𝜇!𝜇" now we only have to consider four matrix elements:

20

𝑒𝑹"𝑒.! → 𝜇𝑹"𝜇.! 𝑒𝑹"𝑒.! → 𝜇𝑳"𝜇0!

𝑒𝑳"𝑒0! → 𝜇𝑹"𝜇.! 𝑒𝑳"𝑒0! → 𝜇𝑳"𝜇0!



The muon current

• We derived the muon currents for the allowed helicity combinations

• And we now need to focus on the electron current

21

𝜇M]𝜇L^: G𝑢↑ 𝑝7 𝛾D𝑣↓ 𝑝G = 2𝐸 0,−cos𝜃, 𝑖, sin𝜃  

𝜇L]𝜇M^: G𝑢↓ 𝑝7 𝛾D𝑣↑ 𝑝G = 2𝐸 0,−cos𝜃,−𝑖, sin𝜃  



The electron current
• The incoming electron and positron spinors (L and R helicities) are:

• The electron current can be obtained directly from the expressions for the muon current

• Taking the Hermitian conjugate of the muon current gives:

22

𝑢↑ 𝑝# = 𝐸
1
0
1
0

, 𝑢↓ = 𝐸
0
1
0
−1

, 𝑣↑(𝑝!) = 𝐸
1
0
−1
0

, 𝑣↓(𝑝!) = 𝐸
0
1
0
1

𝑗(,)
" = 𝑣̅ 𝑝! 𝛾"𝑢 𝑝# 	 and𝑗(")$ = -𝑢 𝑝% 𝛾$𝑣 𝑝&

1𝑢 𝑝( 𝛾*𝑣 𝑝+ 6 = 𝑢 𝑝( 6𝛾7𝛾*𝑣 𝑝+
6

	 = 𝑣 𝑝+ 6𝛾*6𝛾76𝑢 𝑝(

	 = 𝑣 𝑝+ 6𝛾7𝛾*𝑢 𝑝(

	 = 𝑣̅(𝑝+)	𝛾*𝑢 𝑝(

Here	we	used:

𝐴𝐵 6 = 𝐵6𝐴6 

	 𝛾76 = 𝛾7 

𝛾*6𝛾7 = 𝛾7𝛾* 



The electron current

• Taking the complex conjugate of the muon currents for the two non-zero helicity configuration we get:

• To obtain the electron currents we simply need to set 𝜃 = 0
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𝑒M]𝑒L^: 𝑣̅↓ 𝑝4 𝛾C𝑢↑ 𝑝8 = 2𝐸 0,−1,−𝑖, 0  

𝑒L]𝑒M^: 𝑣̅↑ 𝑝G 𝛾C𝑢↓ 𝑝7 = 2𝐸 0,−1, 𝑖, 0  

𝑣̅↓ 𝑝G 𝛾D𝑢↑ 𝑝7 = G𝑢↑ 𝑝7 𝛾D𝑣↓ 𝑝G ∗ = 2𝐸 0,−cos𝜃,−𝑖, sin𝜃  

𝑣̅↑ 𝑝G 𝛾D𝑢↓ 𝑝7 = G𝑢↓ 𝑝7 𝛾D𝑣↑ 𝑝G ∗ = 2𝐸 0,−cos𝜃, 𝑖, sin𝜃  



Matrix element calculation

• We can now calculate 𝑀 = − ,!

-
𝑗 , ⋅ 𝑗()) for the four possible helicity combinations

• e.g. we will do it for 𝑒𝑹"𝑒3! → 𝜇𝑹"𝜇3! which we will call 𝑀𝑹𝑹 (first subscript refers to the 𝑒" helicity and the 

second to the 𝜇" helicity and we don`t need to specify other helicities due to “helicity conservation”)
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𝑒M]𝑒L^: 𝑗 E
C = 𝑣̅↓ 𝑝4 𝛾C𝑢↑ 𝑝8 = 2𝐸 0,−1,−𝑖, 0  

𝜇M]𝜇L^: 𝑗 C
D = 𝑣̅↑ 𝑝G 𝛾D𝑢↓ 𝑝7 = 2𝐸 0,−cos𝜃, 𝑖, sin𝜃  

⟹𝑀.. = −
𝑒!

𝑠 2𝐸 0,−1,−𝑖, 0 ⋅ 2𝐸 0,−cos𝜃, 𝑖, sin𝜃 = −𝑒! 1 + cos𝜃 = −4𝜋𝛼 1 + cos𝜃

Here we used: 𝛼 = ,!

+0
≈ &

&(9



Matrix element calculation

• Assuming that the incoming electrons and positrons are unpolarized, all 4 possible initial helicity states 

are equally likely (and in particular the 2 that contribute) 25

𝑀..
! = 𝑀//

! = 4𝜋𝛼 ! 1 + cos𝜃 !

𝑀./
! = 𝑀/.

! = 4𝜋𝛼 ! 1 − cos𝜃 !



Differential cross section

• Cross section: obtained by averaging over the initial spin states and summing over the final spin states
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𝑑𝜎
𝑑Ω

=
1
4
×

1
64𝜋4𝑠

𝑀MM
4 + 𝑀LM

4 + 𝑀ML
4 + 𝑀LL

4

Note: no interference between amplitudes with 
different helicity configurations

𝑑𝜎
𝑑Ω

=
4𝜋𝛼 4

256𝜋4𝑠
2 1 + cos𝜃 4 + 2 1 − cos𝜃 4

𝑑𝜎
𝑑Ω

=
𝛼"

4𝑠
1 + cos"𝜃



Differential cross section: measurement

• Example: 𝑒!𝑒" → 𝜇!𝜇" at 𝑠 = 29	GeV

• Mark II experiment at the SLAC linear collider

27

Angular distribution becomes slightly asymmetric in 
higher order QED or when Z distribution is included

M.E.Levi et al.
Phys. Rev. Lett 51 (1983) 1941



Total cross section: measurement
• The total cross section is obtained by integrating over 𝜃, 𝜙 using

• We get the total QED cross section for the process 𝑒!𝑒" → 𝜇!𝜇"

28

𝜎 =
4𝜋𝛼4

3𝑠

𝑑𝜎
𝑑Ω

=
𝛼4

4𝑠
1 + cos4𝜃 and)(1 + cos4𝜃)𝑑Ω = 2𝜋)

]8

^8
1 + cos4𝜃 𝑑(cos𝜃) =

16𝜋
3

• Lowest order cross section calculation provides a good 

description of the data

• This is an impressive result: from first principles we have 

arrived at an expression for the electron-positron annihilation 

cross section accurate to about 1% precision!



Spin considerations (𝑬 ≫ 𝒎)
• The angular dependence of the QED electron-positron matrix elements can be understood in terms of angular 

momentum

• Because of the allowed helicity states, the electron and positron interact in a spin state with 𝑆1 = ±1

• They are in a total spin−1 state, consistent with the exchange of a spin−1 particle, the photon, which is aligned 

along the 𝑧 axis: | ⟩1, +1  or | ⟩1, −1  

• Similarly, the muon and anti-muon are produced in a total spin−1 state aligned along an axis with polar angle 𝜃

29
⟹𝑀00 ∝ 𝜓 1,1 , where 𝜓 is the spin state, | ⟩1, −1 2 of the 𝜇!𝜇" pair 



Spin considerations (𝑬 ≫ 𝒎)

• To evaluate this we need to express | ⟩1, +1 1 in terms of the eigenstates of 𝑆:

• We can show that:

30

| ⟩1, +1 e =
8
4 1 − cos𝜃 	| ⟩1, −1 + 8

4 sin𝜃| ⟩1,0 + 8
4 (1 + cos𝜃)| ⟩1, +1  



Spin considerations (𝑬 ≫ 𝒎)
• Using the wavefunction for spin−1 state along an axis at an angle 𝜃 we can understand the angular 

dependence

31



Lorentz-invariant form of the Matrix Element

• Note that the derived spin-averaged ME is written in terms of the muon angle in the CoM frame

• The matrix element is Lorentz-invariant (scalar product of 4-vector currents) and it is desirable to write 

it in a frame-independent form (express in terms of 4-vector scalar products)

• In the CoM: 𝑝& = 𝐸, 0,0, 𝐸 , 𝑝% = 𝐸, 0,0, −𝐸 , 𝑝( = 𝐸, 𝐸sin𝜃, 0, 𝐸cos𝜃 , 𝑝+ = 𝐸,−𝐸sin𝜃, 0, −𝐸cos𝜃

• From which we get: 𝑝& ⋅ 𝑝% = 2𝐸% , 𝑝& ⋅ 𝑝( = 𝐸% 1 − cos𝜃 , and 𝑝& ⋅ 𝑝+ = 𝐸% 1 + cos𝜃 ⟹

32

𝑀0(
! =

1
4× 𝑀..

! + 𝑀/.
! + 𝑀./

! + 𝑀//
! =

= #
&
𝑒& 2 1 + cos𝜃 ! + 2 1 − cos𝜃 ! 	= 𝑒& 1 + cos!𝜃  

𝑀65
4
= 2𝑒G

𝑝8 ⋅ 𝑝7 4 + 𝑝8 ⋅ 𝑝G 4

𝑝8 ⋅ 𝑝4 4 ≡ 2𝑒G
𝑡4 + 𝑢4

𝑠4



Chirality

• The helicity eigenstates for a particle/antiparticle for 𝐸 ≫ 𝑚 are:
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𝑢↑ = 𝐸
𝑐

𝑠𝑒()
𝑐

𝑠𝑒()

, 𝑢↓ = 𝐸
−𝑠
𝑐𝑒()
𝑠

−𝑐𝑒()

, 𝑣↑ = 𝐸
𝑠

−𝑐𝑒()
−𝑠
𝑐𝑒()

, 𝑣↓ = 𝐸
𝑐

𝑠𝑒()
𝑐

𝑠𝑒()

Using 𝑠 = sin 𝜃/2 , 𝑐 = cos 𝜃/2 and 𝑁 = 𝐸 +𝑚 ≈ 𝐸 

• We can define the matrix:

• In the limit 𝐸 ≫ 𝑚 (only in this limit) the helicity eigenstates are also eigenstates of 𝛾;

𝛾f = 𝑖𝛾Y𝛾8𝛾4𝛾7 =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

	 = 0 𝐼
𝐼 0

𝛾1𝑢↑ = +𝑢↑, 𝛾1𝑢↓ = −𝑢↓; 	 𝛾1𝑣↑ = −𝑣↑, 𝛾1𝑣↓ = +𝑣↓

𝛾3 swaps components 1-3 and 2-4 of 𝜓



Chirality

• In general, we can define the eigenstates of 𝛾; as left- and right-handed chiral states: 𝑢2, 𝑢3, 𝑣2, 𝑣3

• In the limit 𝐸 ≫ 𝑚 (and only in this limit)

34

• Important point: in the general case, the helicity and chiral eigenstates are NOT the same!

• Only in the ultra-relativistic limit that the chiral eigenstates correspond to the helicity eigenstates

• Chirality is an important concept in the structure of QED and any interaction of the form 𝒖̀𝜸𝝂𝒖

𝛾1𝑢. = +𝑢. , 𝛾1𝑢/ = −𝑢/; 	 𝛾1𝑣. = −𝑣. , 𝛾1𝑣/ = +𝑣/

𝑢. ≡ 𝑢↑, 𝑢/ ≡ 𝑢↓, 𝑣. ≡ 𝑣↑, 𝑣/ ≡ 𝑣↓



Chirality

• In general, the eigenstates of the chirality operator are:

• Define the projection operators:

• The projection operators project out the chiral eigenstates
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• Note: 𝑃2 projects out right-handed particle states and left-handed antiparticle states

• We can then write any spinor in terms of its left and right-handed chiral components: 

𝛾1𝑢. = +𝑢. , 𝛾1𝑢/ = −𝑢/; 	 𝛾1𝑣. = −𝑣. , 𝛾1𝑣/ = +𝑣/

𝑃.𝑢. = 𝑢. , 	 𝑃.𝑢/ = 0	, 	 𝑃/𝑢. = 0	 , 	 𝑃/𝑢/ = 𝑢/ 
𝑃.𝑣. = 0	 , 	 𝑃.𝑣/ = 𝑣/, 	 𝑃/𝑣. = 𝑣. , 	 𝑃/𝑣/ = 0 

𝑃. =
1
2
1 + 𝛾1 , 𝑃/ =

1
2
1 − 𝛾1

𝜓 = 𝜓. + 𝜓/ =
1
2 1 + 𝛾1 𝜓 +

1
2 1 − 𝛾1 𝜓



Chirality in QED

• In QED the basic interaction between a fermion and a photon is given by

• We can decompose the spinors in terms of their Left- and Right-handed chiral components

• Using the properties of 𝛾;:

   we can directly get

36
• Only certain combinations of chiral eigenstates contribute to the interaction (always a true statement) 

𝑖𝑒 -𝜓𝛾"𝜙

𝛾1 ! = 𝐼, 𝛾12 = 𝛾1, 𝛾1𝛾" = −𝛾"𝛾1

𝑖𝑒 -𝜓𝛾"𝜙 = 𝑖𝑒 -𝜓/ + -𝜓. 𝛾" 𝜙/ + 𝜙. = 

	 = 𝑖𝑒 -𝜓.𝛾"𝜙. + -𝜓/𝛾"𝜙. + -𝜓.𝛾"𝜙/ + -𝜓/𝛾"𝜙/ 	

-𝜓/𝛾"𝜙. = -𝜓.𝛾"𝜙/ = 0 ⟹ 𝑖𝑒 -𝜓𝛾"𝜙 = 𝑖𝑒 -𝜓.𝛾"𝜙. + -𝜓/𝛾"𝜙/ 	



Chirality in QED

• For 𝐸 ≫ 𝑚 the chiral and helicity eigenstates are equivalent

• ⟹ for 𝐸 ≫ 𝑚 only certain helicity combinations contribute to the QED vertex

• This is why we previously found that for two of the four helicity combinations for the muons, the 

current were zero

37



Allowed QED helicity combinations

• In the ultra-relativistic limit, the helicity eigenstate ≡	chiral eigenstate 

• In this limit, the only non-zero helicity combinations in QED are:
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Summary

• In the center-of-mass frame the 𝑒!𝑒" → 𝜇!𝜇" differential cross section is

• Note: masses of the muons neglected (𝐸 ≫ 𝑚))
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• In QED only certain combinations of left- and right-handed chiral states have a non-zero matrix element

• Chiral states are defined by the chiral projection operators

𝑃' =
1
2 1 + 𝛾( , 𝑃) =

1
2 1 − 𝛾(

𝑑𝜎
𝑑Ω

=
𝛼"

4𝑠
1 + cos"𝜃



Summary of Lecture 8

Main learning outcomes

• basic ingredients of a QED calculations

• derivation of the cross section for 𝑒!𝑒" → 𝜇!𝜇" annihilation as an example of calculation in QED taking 

into account the helicity of the electrons and muons

• correspondence between helicity and chirality 
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